¥T76OL8§T7‘[€§"«

Cambridge Assessment
nternational Education

Cambridge International AS & A Level

COMPUTER SCIENCE 9618/41
Paper 4 Practical October/November 2024

2 hours 30 minutes
You will need: Candidate source files (listed on page 2)
evidence.doc

INSTRUCTIONS
Carry out every instruction in each task.
Save your work using the file names given in the task as and when instructed.
You must not have access to either the internet or any email system during this examination.
You must save your work in the evidence document as stated in the tasks. If work is not saved in the
evidence document, you will not receive marks for that task.
e You must use a high-level programming language from this list:
Java (console mode)
Python (console mode)
Visual Basic (console mode)
A mark of zero will be awarded if a programming language other than those listed here is used.

INFORMATION
e The total mark for this paper is 75.
e The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

DC (PQ) 336209/4
© UCLES 2024 [Turn over

Open the evidence document, evidence.doc

Make sure that your name, centre number and candidate number appear on every page of this
document. This document must contain your answers to each question.

Save this evidence document in your work area as:
evidence_ followed by your centre number_candidate number, for example: evidence_zz999 9999

A class declaration can be used to declare a record. If the programming language used does not
support arrays, a list can be used instead.

One source file is used to answer Question 1. The file is called Data. txt
1 Aprogram sorts string data using different sorting methods.

(@) The text file Data.txt stores string data items. Each data item is on a new line in the text
file.

The function ReadbData ():
* has alocal array of strings that can store 45 items
* reads each line of data and stores it in the array

* returns the array.

Write program code for the function ReadData ().

Save your program as Question1_N24.

Copy and paste the program code into part 1(a) in the evidence document.

[6]

© UCLES 2024 9618/41/0/N/24

3

(b) The function FormatArray () takes an array of strings as a parameter. It concatenates the

contents of the array into one string with a space between each array element. The function
returns the concatenated string.

(i) Write program code for FormatArray ().

Save your program.

Copy and paste the program code into part 1(b)(i) in the evidence document.

[2]

(ii) The main program:

e calls ReadData () and stores the returned array
. calls FormatArray () with the returned array and outputs the returned string.

Write program code for the main program.

Save your program.

Copy and paste the program code into part 1(b)(ii) in the evidence document.

[3]

(iii) Test your program.

Take a screenshot of the output.

Save your program.

Copy and paste the screenshot into part 1(b)(iii) in the evidence document.

[1]

© UCLES 2024 9618/41/0/N/24 [Turn over

(c) The function CompareStrings ():
* takes two strings as parameters
e compares each string, one character at a time, to identify which string comes first
alphabetically. If the first two characters are the same, the second character of each
string is compared. This continues until the two characters are different.

The function:

* returns 1 if the first parameter comes before the second alphabetically
* returns 2 if the second parameter comes before the first alphabetically.

Write program code for CompareStrings ().
Assume that all strings are in lower case.

Assume that a difference between two strings will always be identified before the end of one
string is reached.

Do not use an in-built string comparison function.

The strings must be compared one character at a time.

Save your program.

Copy and paste the program code into part 1(c) in the evidence document.

[4]

© UCLES 2024 9618/41/0/N/24

5
(d) The function Bubble () takes an array of strings as a parameter and sorts the data into
ascending alphabetical order, using a bubble sort. The bubble sort uses CompareStrings ()
to compare each string.

The function returns the sorted list.

(i) Write program code for Bubble ().

Save your program.

Copy and paste the program code into part 1(d)(i) in the evidence document.

3]
(ii) Write program code to amend the main program to:

* call Bubble () with the unsorted array as a parameter
* call FormatArray () with the sorted array and output the returned string.

Save your program.

Copy and paste the program code into part 1(d)(ii) in the evidence document.

[2]
(iii) Test your program.

Take a screenshot of the output.

Save your program.

Copy and paste the screenshot into part 1(d)(iii) in the evidence document.

[1]

© UCLES 2024 9618/41/0/N/24 [Turn over

6
2 Acomputer program is designed to simulate horses doing show jumping. In show jumping, horses
jump over obstacles called fences. A horse successfully jumps a fence if it does not knock the
fence down.

The program is written using Object-Oriented Programming (OOP).

The class Horse stores data about the horses.

Horse
Name : STRING stores the name given to the horse
MaxFenceHeight : INTEGER stores the maximum height in cm that the horse can

jump, for example 132

PercentageSuccess : INTEGER | stores the percentage chance of a horse not knocking
down a fence, for example 70 represents a 70% chance
of jumping a fence successfully

Constructor () initialises Name, MaxFenceHeight and
PercentageSuccess to its parameter values

GetName () returns the name of the horse
GetMaxFenceHeight () returns the maximum height the horse can jump
Success () calculates and returns the percentage chance of a horse

successfully jumping a specific fence

(@) (i) Write program code to declare the class Horse and its constructor.
Do not declare the other methods.
Use your programming language’s appropriate constructor.

All attributes must be private. If you are writing in Python, include attribute declarations
using comments.

Save your program as Question2_N24.

Copy and paste the program code into part 2(a)(i) in the evidence document.

[4]

(ii) The get methods GetName () and GetMaxFenceHeight () each return the relevant
attribute.

Write program code for the get methods.

Save your program.

Copy and paste the program code into part 2(a)(ii) in the evidence document.

[3]

© UCLES 2024 9618/41/0/N/24

7
(b) The array Horses stores objects of type Horse.
(i) The program has two horses:

* The horse named ‘Beauty’ can jump a maximum height of 150cm and has a success
percentage rate of 72%.

* The horse named ‘Jet’ can jump a maximum height of 160cm and has a success
percentage rate of 65%.

Write program code to:

* declare the array, Horses, local to the main program with space for two Horse
objects

» store the two horses described in the array

e output the name of both Horse objects from the array.

Save your program.

Copy and paste the program code into part 2(b)(i) in the evidence document.

[3]
(ii) Test your program.

Take a screenshot of the output.

Save your program.

Copy and paste the screenshot into part 2(b)(ii) in the evidence document.

[1]

© UCLES 2024 9618/41/0/N/24 [Turn over

8

(c) The class Fence stores data about the fences. Each fence has a height in cm and a risk
number.

The risk is a whole number between 1 and 5 inclusive. A risk of 1 means the fence is the
easiest type to jump. Arisk of 5 means the fence is the hardest type to jump.

Fence
Height : INTEGER stores the height of the fence in cm
the height is between 70 and 180 inclusive
Risk : INTEGER stores the risk as a whole number between 1 and 5
inclusive
Constructor () initialises Height and Risk to its parameter values
GetHeight () returns the height of the fence
GetRisk() returns the risk of the fence

(i) Write program code to declare the class Fence, its constructor and get methods.
Use your programming language’s appropriate constructor.
All attributes must be private.

If you are writing in Python, include attribute declarations using comments.

Save your program.

Copy and paste the program code into part 2(c)(i) in the evidence document.

[4]

(ii) The array Course stores four Fence objects. The user inputs the height and risk for
each fence, and these are validated before each fence is created.

Amend the main program to:

* declare the local array Course

* take as input the data for four fences from the user

* loop the input until both the height and risk are valid for each fence

* create an instance of Fence for each of the four valid fences and store each
instance in the array.

Save your program.

Copy and paste the program code into part 2(c)(ii) in the evidence document.

[5]

© UCLES 2024 9618/41/0/N/24

9
(d) The chance of a horse jumping a fence without knocking it down is calculated as follows.

If the height of the fence is more than the maximum height a horse can jump, the success
percentage is 20% of the horse’s PercentageSuccess. The risk does not affect this value.

If the height of the fence is less than or equal to the maximum height a horse can jump, the
risk gives a modifier value to multiply with the horse’s PercentageSuccess.

The risk values and their modifiers are given in this table:

Risk Modifier
5 0.6
4 0.7
3 0.8
2 0.9
1 1.0
For example:

* The horse Jet has PercentageSuccess of 65 and MaxFenceHeight of 160.

* Afence has a height of 140 and a risk of 3.

* The height of the fence is less than the horse’s MaxFenceHeight, therefore the risk is
used.

* The risk of 3 gives the modifier 0.8.

* The modifier 0.8 is multiplied by the horse’s PercentageSuccess of 65, which gives 52.

* The chance of the horse successfully jumping this fence is 52%.

The method Success () inthe Horse class:

* takes the height and risk of a fence as parameters

* calculates the percentage chance of success for that horse jumping the fence without
knocking it down

* returns the calculated percentage chance of success as a real number.

Write program code for Success ().

Save your program.

Copy and paste the program code into part 2(d) in the evidence document.

[5]

© UCLES 2024 9618/41/0/N/24 [Turn over

10
(e) (i) Write program code to amend the main program to:
* calculate and output the chance of the first horse jumping each of the four fences without
knocking each fence down
e calculate and output the chance of the second horse jumping each of the four fences
without knocking each fence down.

All outputs must have appropriate messages including the name of the horse and the
fence number.

An example output for one horse jumping two fences is:

"The horse Fox at fence 1 has a 68% chance of success
The horse Fox at fence 2 has a 72% chance of success"

Save your program.

Copy and paste the program code into part 2(e)(i) in the evidence document.

[3]

(ii) Write program code to amend the main program to:
* calculate and output the average chance of success for each horse jumping over all
four fences without knocking each fence down (the average is the total of values
divided by the quantity of values). An example output for one horse jumping all of

the fences is:

"The horse Fox has an average 70% chance of jumping over all four
fences"

* output the name of the horse that has the highest average chance of success.
You can assume that each average will be different.

All outputs must have appropriate messages.

Save your program.

Copy and paste the program code into part 2(e)(ii) in the evidence document.

[2]

© UCLES 2024 9618/41/0/N/24

1"

(iii) Test your program with the following input data for four fences:

Height Risk
152 5
121 1
130 3
145 4

Take a screenshot of the output.

Save your program.

Copy and paste the screenshot into part 2(e)(iii) in the evidence document.

[2]

© UCLES 2024 9618/41/0/N/24 [Turn over

12
3 Alinked list stores positive integer data in a 2D array. The first dimension of the array stores the
integer data. The second dimension of the array stores the pointer to the next node in the linked
list.

Alinked list node with no data is initialised with the integer —1. These nodes are linked together as
an empty list. A pointer of —1 identifies that node as the last node.

The linked list can store 20 nodes.

The global 2D array LinkedList stores the linked list.

LinkedList is initialised as an empty list. The data in each node is initialised to —1. Each node’s
pointer stores the index of the next node. The last node stores the pointer value -1, which indicates

it is the last node.

The global variable FirstEmpty stores the index of the first element in the empty list. This is the
first node in the empty linked list when it is initialised, which is index 0.

The global variable FirstNode stores the index of the first element in the linked list. There is no
data in the linked list when it is initialised, so FirstNode is initialised to - 1.

This diagram shows the content of the initialised array.

FirstEmpty = 0

FirstNode = -1
Index Data Pointer
0 -1 1
1 -1 2
2 -1 3
3 -1 4
4 -1 5
19 -1 -1

(@) Write program code for the main program to declare and initialise L.inkedList, FirstNode
and FirstEmpty.

Save your program as Question3_N24.

Copy and paste the program code into part 3(a) in the evidence document.

[2]

© UCLES 2024 9618/41/0/N/24

13

(b) The procedure InsertData () takes five positive integers as input from the user and inserts
these into the linked list.

Each data item is inserted at the front of the linked list.

The table shows the steps to follow depending on the state of the linked list:

Linked list state Steps

insert the data in the index pointed to by FirstEmpty
not full change the pointer to the index pointed to by FirstNode

change the values of FirstNode and FirstEmpty

full end the procedure

Any node that is at the end of the linked list has a pointer of -1.

Write program code for InsertData ().

Save your program.

Copy and paste the program code into part 3(b) in the evidence document.

[6]

© UCLES 2024 9618/41/0/N/24 [Turn over

14

(c) The procedure OutputLinkedList () outputs the data in the linked list in order by following
the pointers from FirstNode.

(i) Write program code for OutputLinkedList ().

Save your program.

Copy and paste the program code into part 3(c)(i) in the evidence document.

[2]

(ii) Amend the main program to call InsertData () and then OutputLinkedList ().

Save your program.

Copy and paste the program code into part 3(c)(ii) in the evidence document.

[1]
(iii) Test your program with the test data:
5 1 2 3 8

Take a screenshot of the output.

Save your program.

Copy and paste the screenshot into part 3(c)(iii) in the evidence document.

[1]

© UCLES 2024 9618/41/0/N/24

15
(d) The procedure RemoveData () removes a node from the linked list.
The procedure takes the data item to be removed from the linked list as a parameter.
The procedure checks each node in the linked list, starting with the node FirstNode, until it
finds the node to be removed. This node is added to the empty list, and pointers are changed
as appropriate. The procedure only removes the first occurrence of the parameter.

Assume that the data item being removed is in the linked list.

(i) Write program code for RemoveData ().

Save your program.

Copy and paste the program code into part 3(d)(i) in the evidence document.

[5]
(ii) Amend the main program to:
. call RemoveData () with the parameter 5

e output the word "After"
. call OutputLinkedList ().

Save your program.

Copy and paste the program code into part 3(d)(ii) in the evidence document.

[1]

(iii) Test your program with both sets of given test data:
Testdataset1: 5 6 8 9 5
Testdataset2: 10 7 8 5 6

Take a screenshot of each output.

Save your program.

Copy and paste the screenshot(s) into part 3(d)(iii) in the evidence document.

[1]

© UCLES 2024 9618/41/0/N/24

16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2024 9618/41/0/N/24

